Ruben Dario Solarte Bolaños, Antonio Carlos Valdiero, Luiz Antônio Rasia, Jose Alexander Dueñas Salazar


La mecatrónica es un campo interdisciplinario de ciencias de la ingeniería caracterizado por la integración e interconexión entre la ingeniería mecánica, la ingeniería eléctrica y la informática. Los productos mecatrónicos son en su mayoría estructuralmente complejos, pero son una solución óptima para muchos campos de la Industria como la medicina, la agricultura, la agroindustria entre otros. Este artículo tiene como objetivo principal identificar las tendencias investigativas en los proyectos mecatrónicos NPD en la actualidad. Para ello se hace una revisión bibliográfica, citando trabajos importantes en el área a partir del año 2017 y abordando el objetivo principal de cada investigación, para así agruparlas en enfoques e identificar las tendencias investigativas actualmente. Al final se puede concluir que la tendencia es reducir el costo total en un producto mecatrónico, así como de comenzar a adaptar los conceptos de las nuevas tecnologías de la Industria 4.0 (I4.0) a los proyectos de desarrollo de nuevos productos mecatrónicos (NPD).
Palabras Clave: Enfoques investigativos, NPD, proyecto mecatrónico, tendencia investigativa.

Mechatronics is an interdisciplinary field of engineering sciences characterized by the integration and interconnection between mechanical engineering, electrical engineering, and computer science. Mechatronic products are mostly structurally complex, but they are an optimal solution for many fields of Industry such as medicine, agriculture, agroindustry among others. The main objective of this paper is to identify research trends in the development of mechatronics products today. To meet this objective, a bibliographic review is made, citing important works in the area from 2017 on and addressing the main objective of each investigation in order to group them into approaches and identify current investigative trends. In the end, it can be concluded that the trend is to reduce the total cost of a mechatronic product, as well as to begin to adapt the concepts of the new technologies of Industry 4.0 (I4.0) to mechatronic NPD (new project development) projects.
Keywords: investigative approaches, NPD, Mechatronic Project, Research trend.

Texto completo:

901-919 PDF


Ahmadinejad A., Afshar A., (2011). Complexity management in mechatronic product development based on structural criteria. Mechatronics (ICM), 2011 IEEE 7–12.

Anuar A., Sahari K. S. M., Yue E. C., (2017). Development of a low cost upper limb motion tracking system with real-time visual output. IRIS 2016 - 2016 IEEE 4th Int. Symp. Robot. Intell. Sensors Empower. Robot. with Smart Sensors 146–150. https://doi.org/10.1109/IRIS.2016.8066081.

Attaran M., (2017). Additive Manufacturing: The Most Promising Technology to Alter the Supply Chain and Logistics. J. Serv. Sci. Manag. 10. https://doi.org/10.4236/jssm.2017.103017.

Barbalho S. C. M., Monteiro de Carvalho M., Tavares P. M., Llanos C. H., Leite G. A., (2019). Exploring the Relation Among Product Complexity, Team Seniority, and Project Performance as a Path for Planning New Product Development Projects: A Predictive Model Applying the System Dynamics Theory. IEEE Trans. Eng. Manag. 1–14. https://doi.org/10.1109/TEM.2019.2936502.

Bobka P., Heyn J., Henningson J., Römer M., Engbers T., Dietrich F., Dröder K., (2018). Development of An Automated Assembly Process Supported With An Artificial Neural Network. J. Mach. Eng. 18, 28–41.

Bula I., Hoxha V., Hajrizi E., (2018). Robot from Mechatronics Scrap -Beggar Robot. IFAC-PapersOnLine 51, 216–219. https://doi.org/10.1016/j.ifacol.2018.11.289.

Chan R. W. K., Lin Y. S., Tagawa H., (2019). A smart mechatronic base isolation system using earthquake early warning. Soil Dyn. Earthq. Eng. 119, 299–307. https://doi.org/10.1016/j.soildyn.2019.01.019.

Chen C. H., Ling S. F., Chen W., (2003). Project scheduling for collaborative product development using DSM. Int. J. Proj. Manag. 21, 291–299. https://doi.org/10.1016/S0263-7863(02)00023-6.

Chouinard U., Achiche S., Baron L., (2019). Integrating negative dependencies assessment during mechatronics conceptual design using fuzzy logic and quantitative graph theory. Mechatronics 59, 140–153. https://doi.org/10.1016/j.mechatronics.2019.03.009.

Deng C., Guo R. feng, Xu X., Zhong R. Y., Yin Z., (2017). A new high-performance open CNC system and its energy-aware scheduling algorithm. Int. J. Adv. Manuf. Technol. 93, 1513–1525. https://doi.org/10.1007/s00170-017-0593-6.

Emilia G. D., Gaspari A., Natale E., (2019). Mechatronics Applications of Measurements for Smart Manufacturing in an Industry. IEEE Instrum. Meas. Mag. 22, 35–43.

Fati S. M., Al-Nabhani S., Muneer A., (2019). Automated library system using SMS based pick and place robot. Int. J. Comput. Digit. Syst. 8, 535–544. https://doi.org/10.12785/ijcds/080601.

Fotso A. B., Wasgint R., Rettberg A., (2012). State of the art for mechatronic design concepts. Proc. 2012 8th IEEE/ASME Int. Conf. Mechatron. Embed. Syst. Appl. MESA 2012 232–240. https://doi.org/10.1109/MESA.2012.6275567.

Gao W., Zhang C., Hu T., Ye Y., (2019). An intelligent CNC controller using cloud knowledge base 213–223.

Gheorghe G., (2018). Original Concepts and Achievements for Designing of Concepts and Achievements for Designing of Smart Mechatronics, Cyber-MixMechatronics Laboratories in the Industry, Designing Smart Cyber-MixMechatronics Laboratories. IFAC-PapersOnLine 51, 598–603. https://doi.org/10.1016/j.ifacol.2018.11.219.

Gogineni S. K., Riedelsheimer T., Stark R., (2019). Systematic development methodology for customizable IoT devices. Procedia CIRP 84, 393–399. https://doi.org/10.1016/j.procir.2019.04.287.

Gravalos I., Ziakas N., Loutridis S., Gialamas T., (2019). A mechatronic system for automated topping and suckering of tobacco plants. Comput. Electron. Agric. 166, 104986. https://doi.org/10.1016/j.compag.2019.104986.

Grigoriev S. N., Martinov G. M., (2018). An approach to creation of terminal clients in CNC system. RPC 2018 - Proc. 3rd Russ. Conf. Comput. Technol. Appl. 1–4. https://doi.org/10.1109/RPC.2018.8482153.

Gualtieri L., Palomba I., Wehrle E. J., Vidoni R., (2020a). The Opportunities and Challenges of SME Manufacturing Automation: Safety and Ergonomics in Human--Robot Collaboration, in: Matt D. T., Modrák V., Zsifkovits H. (Eds.), Industry 4.0 for SMEs: Challenges, Opportunities and Requirements. Springer International Publishing, Cham, pp. 105–144. https://doi.org/10.1007/978-3-030-25425-4_4.

Gualtieri L., Rojas R. A., Ruiz Garcia M. A., Rauch E., Vidoni R., (2020b). Implementation of a Laboratory Case Study for Intuitive Collaboration Between Man and Machine in SME Assembly, in: Matt D. T., Modrák V., Zsifkovits H. (Eds.), Industry 4.0 for SMEs: Challenges, Opportunities and Requirements. Springer International Publishing, Cham, pp. 335–382. https://doi.org/10.1007/978-3-030-25425-4_12.

Hehenberger P., (2014). Perspectives on hierarchical modeling in mechatronic design. Adv. Eng. Informatics 28, 188–197. https://doi.org/10.1016/j.aei.2014.06.005.

Hehenberger P., Poltschak F., Zeman K., Amrhein W., (2010). Hierarchical design models in the mechatronic product development process of synchronous machines. Mechatronics 20, 864–875. https://doi.org/10.1016/j.mechatronics.2010.04.003.

Jacobs M., Swink M., (2011). Product portfolio architectural complexity and operational performance: Incorporating the roles of learning and fixed assets. J. Oper. Manag. -J OPER Manag 29, 677–691. https://doi.org/10.1016/j.jom.2011.03.002.

Lara Padilla H., Sánchez X. S., Paucar T. A., (2017). Design and evaluation of a low-cost mechatronic system to study upper and lower limbs biomechanics. GHTC 2017 - IEEE Glob. Humanit. Technol. Conf. Proc. 2017-Janua, 1–5. https://doi.org/10.1109/GHTC.2017.8239307.

Lenz J., Wuest T., Westkämper E., (2018). Holistic approach to machine tool data analytics. J. Manuf. Syst. 48, 180–191. https://doi.org/10.1016/j.jmsy.2018.03.003.

Li Q., Zhang H. H., (2019). Model reduction of a real time multidisciplinary mechatronic system. Proc. 2019 20th Int. Conf. Res. Educ. Mechatronics, REM 2019 5, 1–5. https://doi.org/10.1109/REM.2019.8744102

Liu X. F., Shahriar M. R., Al Sunny S. M. N., Leu M. C., Hu L., (2017). Cyber-physical manufacturing cloud: Architecture, virtualization, communication, and testbed. J. Manuf. Syst. 43, 352–364. https://doi.org/10.1016/j.jmsy.2017.04.004.

Martinov G. M., Al Khoury A., Issa A., (2018). An approach of developing low cost ARM based CNC systems by controlling CAN drives. MATEC Web Conf. 224. https://doi.org/10.1051/matecconf/201822401020.

Martinov G. M., Ljubimov A. B., Martinova L. I., (2020). From classic CNC systems to cloud-based technology and back. Robot. Comput. Integr. Manuf. 63, 101927. https://doi.org/10.1016/j.rcim.2019.101927.

Martinov G. M., Nikishechkin P. A., Grigoriev A. S., Chervonnova N. Y.,

(2019). Organizing Interaction of Basic Components in the CNC System AxiOMA Control for Integrating New Technologies and Solutions. Autom. Remote Control 80, 584–591. https://doi.org/10.1134/S0005117919030159.

Martinova L. I., Fokin N. N., (2018). An approach to creation of a unified system of programming CNC machines in the dialog mode. MATEC Web Conf. 224. https://doi.org/10.1051/matecconf/201822401101.

Mcharek M., Azib T., Hammadi M., Choley J. Y., Larouci C., (2018). Knowledge sharing for mechatronic systems design and optimization. IFAC-PapersOnLine 51, 1365–1370. https://doi.org/10.1016/j.ifacol.2018.08.338.

Mcharek M., Hammadi M., Azib T., Larouci C., Choley J. Y., (2019). Collaborative design process and product knowledge methodology for mechatronic systems. Comput. Ind. 105, 213–228. https://doi.org/10.1016/j.compind.2018.12.008.

Menezes B. C., Kelly J. D., Leal A.G., (2019). ScienceDirect and Design of Industry Opportunities in Manufacturing, Identification and Design of Industry Opportunities in Manufacturing, Examples from Mature Industries to Level Sy. IFAC Pap. 52, 2494–2500. https://doi.org/10.1016/j.ifacol.2019.11.581.

Meysam Mousavi S., Tavakkoli Moghaddam R., Vahdani B., Hashemi H., Sanjari M. J., (2013). A new support vector model-based imperialist competitive algorithm for time estimation in new product development projects. Robot. Comput. Integr. Manuf. 29, 157–168. https://doi.org/10.1016/j.rcim.2012.04.006

Mhenni F., Hehenberger P., Penas O., Hammadi M., Choley J. Y., (2018). Systems Engineering Approach for the Conjoint Design of Mechatronic Products and Their Manufacturing Systems. IEEE Comput. Soc.

Mohebbi A., Achiche S., Baron L., (2019). Integrated and concurrent detailed design of a mechatronic quadrotor system using a fuzzy-based particle swarm optimization. Eng. Appl. Artif. Intell. 82, 192–206. https://doi.org/10.1016/j.engappai.2019.03.025.

Moulianitis V. C., Zachiotis G. A., Aspragathos N. A., (2018). A new index based on mechatronics abilities for the conceptual design evaluation. Mechatronics 49, 67–76. https://doi.org/10.1016/j.mechatronics.2017.11.011

Penas O., Plateaux R., Patalano S., Hammadi M., (2017). Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems. Comput. Ind. 86, 52–69. https://doi.org/10.1016/j.compind.2016.12.001.

Qiu L., Lin X., Wang Y., Yuan S., Shi W., (2020). A mechatronic smart skin of flight vehicle structures for impact monitoring of light weight and low-power consumption. Mech. Syst. Signal Process. 144, 106829. https://doi.org/10.1016/j.ymssp.2020.106829.

Quatrano A., De Simone M. C., Rivera, Z. B., Guida D., (2017). Development and implementation of a control system for a retrofitted CNC machine by using Arduino. FME Trans. 45, 565–571. https://doi.org/10.5937/fmet1704565Q.

Rad C. R., Hancu O., (2017). An improved nonlinear modelling and identification methodology of a servo-pneumatic actuating system with complex internal design for high-accuracy motion control applications. Simul. Model. Pract. Theory 75, 29–47. https://doi.org/10.1016/j.simpat.2017.03.008.

Ramesh K., Prajwal K. T., Roopini C., Gowda M., Gupta V., (2020). Design and Development of an Agri-bot for Automatic Seeding and Watering Applications. 2nd Int. Conf. Innov. Mech. Ind. Appl. ICIMIA 2020 - Conf. Proc. 686–691. https://doi.org/10.1109/ICIMIA48430.2020.9074856.

Ruzanov, N. V., Bolotov M. A., Pechenin V. A., Pronichev N. D., Stepanova E. R., (2017). The Method of Improving the Accuracy of Mechatronic Systems for Complex Geometry Measurements. Procedia Eng. 176, 529–539. https://doi.org/10.1016/j.proeng.2017.02.352.

Saravanakumar D., Mohan B., Muthuramalingam T., (2017). A review on recent research trends in servo pneumatic positioning systems. Precis. Eng. 49, 481–492. https://doi.org/10.1016/j.precisioneng.2017.01.014.

Saravanakumar D., Mohan B., Muthuramalingam T., Sakthivel G., (2018). Performance evaluation of interconnected pneumatic cylinders positioning system. Sensors Actuators, A Phys. 274, 155–164. https://doi.org/10.1016/j.sna.2018.03.025.

Stankovski S., Ostoji G., Zhang X., Baranovski I., Horvat S., (2019). Mechatronics, Identification Tehnology, Industry 4. 0 and Education 20–22. https://doi.org/10.1109/INFOTEH.2019.8717775.

Tamm C., Perfetto S., Tamm C., Perfetto S., Tamm C., Perfetto S., (2019). Design and Optimization of Mechatronic Systems Using a Holistic and Parametric Simulation Approach. IFAC Pap. 52, 271–276. https://doi.org/10.1016/j.ifacol.2019.11.686.

Tantawi K.H., Fidan I., Tantawy A., (2019). Status of Smart Manufacturing in the United States. 2019 IEEE 9th Annu. Comput. Commun. Work. Conf. 281–283. https://doi.org/10.1109/CCWC.2019.8666589.

Valencia F., Ortiz D., Ojeda D., (2018). Design and testing of low-cost knee prosthesis. 2017 IEEE 2nd Ecuador Tech. Chapters Meet. ETCM 2017 2017-Janua, 1–6. https://doi.org/10.1109/ETCM.2017.8247548.

Vij, A., Vijendra, S., Bajaj, S., Bassi, A., Sharma A., (2019). IoT and Machine Learning Approaches for Automation of Farm IoT and Machine Approaches Automation of Farm on Computational Intelligence for IoT and Machine Learning Approaches for Automation of Farm Irrigation System. Procedia Comput. Sci. 167, 1250–1257. https://doi.org/10.1016/j.procs.2020.03.440.

Wasif M., Siddique Q. M., Sakib S., Rameez T.M., (2019). Design of Mini CNC using Arduino uno 3882–3884.

Weber C., (2005). Complexity as Discussed in Other Fields. Int. Conf. Eng. Des. Iced 05 Melb. 1–12.

Wu J., Li D., Wang S., (2017). The design and experimental research of an open architecture soft-CNC system based on RTX and an IPC. Int. J. Adv. Manuf. Technol. 89, 1387–1399. https://doi.org/10.1007/s00170-016-9197-9.

Yao Y., Liu M., Du J., Zhou L., (2019). Design of a machine tool control system for function reconfiguration and reuse in network environment. Robot. Comput. Integr. Manuf. 56, 117–126. https://doi.org/10.1016/j.rcim.2018.09.005.

Ye Y., Hu T., Zhang C., Luo W., (2018). Design and development of a CNC machining process knowledge base using cloud technology. Int. J. Adv. Manuf. Technol. 94, 3413–3425. https://doi.org/10.1007/s00170-016-9338-1.

Yusof Y., Latif K., (2015). New interpretation module for open architecture control based CNC systems. Procedia CIRP 26, 729–734. https://doi.org/10.1016/j.procir.2014.07.051.

Zheng C., Xiansheng Q., Eynard B., Jing L., Jing B., Yicha Z., Gomes S., (2019). Interface model-based configuration design of mechatronic systems for industrial manufacturing applications. Robot. Comput. Integr. Manuf. 59, 373–384.

Židek K., Modrák V., Pitel J., Šoltysová Z., (2020). The Digitization of Quality Control Operations with Cloud Platform Computing Technologies, in: Matt, D.T., Modrák, V., Zsifkovits, H. (Eds.), Industry 4.0 for SMEs: Challenges, Opportunities and Requirements. Springer International Publishing, Cham, pp. 305–334. https://doi.org/10.1007/978-3-030-25425-4_11.

URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Barra de separación

Licencia Creative Commons    Pistas Educativasa está bajo la Licencia Creative Commons Atribución 3.0 No portada.    


Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Gto. México

Tel. 01 (461)61 17575 Ext 5106