MODELOS DE TECNOLOGIAS DEL BIG DATA ANALYTICS Y SU APLICACIÓN EN SALUD

Gustavo Verduzco Reyes, Ernesto Bautista Thompson, Jorge A. Ruiz Vanoye, Alejandro Fuentes Penna

Resumen


Resumen

Big Data Analytics se refiere al almacenamiento, administración y análisis de grandes volúmenes de datos a través de métodos estadísticos o científicos para descubrir relaciones entre los datos. Recientemente se ha aplicado al campo de la salud, pero, ¿Qué tecnologías de big data aplicar a campos específicos en salud? El presente trabajo identifica áreas de oportunidad en salud que se benefician del big data Analytics, como la medicina personalizada, registros de salud, estancias y readmisiones de pacientes y biomedicina. También, se presenta una propuesta de modelo que conjunta plataformas tecnológicas (Hadoop, Mahout, Spark), algoritmos (Filtrado colaborativo, árboles de decisión, clustering) y campos de salud. Como ejemplo, se aplica el modelo propuesto en el caso del monitoreo a distancia de la salud de un paciente con problemas del corazón, como una base para su implementación real en un trabajo futuro.

Palabras Claves: Big data, modelo tecnológico, salud.


MODELS OF TECHNOLOGIES OF BIG DATA ANALYTICS AND ITS APPLICATION IN HEALTH


Abstract

Big Data Analytics refers to the storage, management and analysis of large volumes of data through statistical or scientific methods to discover relationships between data. Recently it has been applied to the field of healthcare, but, What big data technologies apply to specific fields in healthcare? This paper identifies areas of opportunity in healthcare that benefit from the big data analytics, such as personalized medicine, health records, stays and readmissions of patients and biomedicine. Also, a model proposal is presented that combines technological platforms (Hadoop, Mahout, Spark), algorithms (Collaborative filtering, decision trees, clustering) and health fields. An application of the model in relation to the remote monitoring of the patient’s health with heart problems illustrates its use, as a basis for its implementation in future work.

Keywords: Big data, healthcare, technological model.


Texto completo:

1583-1599 PDF

Referencias


Andreu Perez, J., Poon, C. C., Merrifield, R. D., Wong, S. T., & Yang, G.-Z., Big data for health. IEEE Journal of Biomedical and Health Informatics, 19(4), pp.1193–1208, 2015.

Balkan, S., & Goul, M., Advances in Predictive Modeling: How In-Database Analytics Will Evolve to Change the Game. BUSINESS IN℡LIGENCE JOURNAL, 15(2), 2010: https://www.researchgate.net/profile/Sule_Balkan /publication/264905640_Advances_in_Predictive_Modeling_How_InDatabase_Analytics_Will_Evolve_to_Change_the_Game/links/53f5c3870cf22be01c3faa29.pdf.

Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G., Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Affairs, 33(7), pp. 1123–1131, 2014.

Belle, A., Thiagarajan, R., Soroushmehr, S. M. R., Navidi, F., Beard, D. A., & Najarian, K., Big Data Analytics in Healthcare. BioMed Research International, 2015, pp.1–16, 2015, https://doi.org/10.1155/2015/370194.

Bosch, V. (2016). Big Data in Market Research: Why More Data Does Not Automatically Mean Better Information. GfK-Marketing Intelligence Review, 8(2), pp. 56–63, 2016, https://doi.org/10.1515/gfkmir-2016-0017.

Chawla, N. V., & Davis, D. A., Bringing big data to personalized healthcare: a patient-centered framework. Journal of General Internal Medicine, 28(3), pp. 660–665, 2013.

Buffa, M., Petti, M., & Perasso, O., Readmisión hospitalaria en un centro ambulatorio quirúrgico. Rev. Argent. Anestesiol, 65(1), pp. 30–40, 2007.

Costa, F. F., Big data in biomedicine. Drug Discovery Today, 19(4), pp. 433–440, 2014.

Diebold, F. X., On the Origin (s) and Development of the Term’Big, 2012 Data’: http://papers.ssrn.com/sol3/papers.cfm? abstract_id=2152421.

Dietrich, B. L., Plachy, E. C., & Norton, M. F., Analytics across the enterprise: How IBM realizes business value from big data and analytics, 2014 IBM Press: https://books.google.com/books?hl=es&lr=&id= lGOVAwAAQBAJ&oi=fnd&pg=PR13&dq=Analytics+across+the+enterprise:+how+ibm+realizes+business+value+from+big+data+and+analytics&ots=cKqJPCO-7N&sig=1A4GHykiBRN8c5bfx7-nLCqUMyg.

Feldman, B., Martin, E. M., & Skotnes, T., Big Data in Healthcare Hype and Hope. Dr. Bonnie, 360, 2012: http://www.ghdonline.org/uploads/big-data-in-healthcare_B_Kaplan_2012.pdf.

Groves, P., Kayyali, B., Knott, D., & Van Kuiken, S., The “big data” revolution in US healthcare. McKinsey& Company Web site, 2013.

Hamburg, M. A., & Collins, F. S., The path to personalized medicine. New England Journal of Medicine, 363(4), pp. 301–304, 2010.

Hermon, R., & Williams, P. A., Big data in healthcare: What is it used for?, 2014: http://ro.ecu.edu.au/aeis/22/.

Hiltbrand, T., Behavior-Based Budget Management Using Predictive Analytics. The Business Intelligence Journal, 18(INL/JOU-12-26713), 2013: http://www.osti.gov/scitech/biblio/1072389.

Ivan, M., & Velicanu, M., Healthcare industry improvement with business intelligence. Informatica Economica, 19(2), 81, 2015.

Jiang, F., & Leung, C., A Data Analytic Algorithm for Managing, Querying, and Processing Uncertain Big Data in Cloud Environments. Algorithms, 8(4), pp. 1175–1194, 2015: https://doi.org/10.3390/a8041175.

McAfee, A., & Brynjolfsson, E., Big data: the management revolution. Harvard Business Review, 90(10), 60, 2012.

Jin-ho Jeon, & Seung-Ryul Jeong, Designing a Crime-Prevention System by Converging Big Data and IoT. Journal of Korean Society for Internet Information, 17(3), pp. 115–128: https://doi.org/10.7472/jksii.2016 .17.3.115.

Lazer, D., Kennedy, R., King, G., & Vespignani, A., The Parable of Google Flu: Traps in Big Data Analysis. Science, 343(6176), pp. 1203–1205, 2014: https://doi.org/10.1126/science.1248506.


Enlaces refback

  • No hay ningún enlace refback.